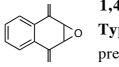
## A New Catalytic and Enantioselective Desymmetrization of Symmetrical Methylidene Cycloalkene Oxides.

Fabio Bertozzi, Paolo Crotti, Franco Macchia, Mauro Pineschi\* Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy


Alexander Arnold and Ben L. Feringa\*

Department of Organic and Molecular Inorganic Chemistry, University of Groningen, Nijenborgh 4, NL9747 AG Groningen, The Netherlands.

**General**. All reactions were conducted in flame dried glassware with magnetic stirring under an atmosphere of argon. Toluene and diethyl ether were distilled from sodium/benzophenone ketyl and stored under argon. THF and Diisopropylamine were distilled from LiAlH<sub>4</sub> and CaH<sub>2</sub> respectively and stored under argon. Et<sub>2</sub>Zn (1.1 M solution in toluene), EtMgCl (2.0 M solution in THF) and Butyllithium (1.6 M solution in hexanes) were purchased from Aldrich. Methyl-triphenyl-phosphonium-bromide (98%) and 2-Methyl-1,3-cyclopentanedione (99%) were purchased from Aldrich. Analytical TLC were performed on Alugram SIL G/UV254 silica gel sheets (Macherey-Nagel) with detection by 0.5% phosphomolybdic acid solution in 95% EtOH. Silica gel 60 (Macherey-Nagel 230-400 mesh) was used for flash chromatography. Solvents for extraction and chromatography were HPLC grade.

Optical rotation were measured on a Perkin-Elmer 241 digital polarimeter with a 1 dm cell. <sup>1</sup>H NMR spectra were recorded on a Bruker AC-200 spectrometer on CDC1<sub>3</sub> solution. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform:  $\delta$  7.26). <sup>13</sup>C NMR spectra were recorded on a Bruker AC-200 (50 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform:  $\delta$  77.7). Gas chromatography was performed on a Perkin-Elmer 8420 apparatus (FI detector) using a Chromopak fused silica 25 m X 0.25 mm column, coated with CP-Cyclodextrin-B-236-M-19). In all cases, the

injector and detector temperature was 250°C and a 1.8 mL / min helium flow was employed. Analytical high performance liquid chromatography (HPLC) was performed on a Waters 600E equipped with a Waters 990 photodiode array detector using a Daicel Chiralcel OD-H column.



**1,4-Dimethylidene-2,3-epoxy-2,3-dihydro-naphthalene** (8). **Typical Procedure for Wittig Olefination.** Accordingly to a previously described procedure,<sup>1</sup> to a stirring suspension of MePh<sub>3</sub>PBr (8.21 g, 23 mmol) in anhydrous THF (20 ml) is added by a

cannula at 0°C a solution of LDA (23 mmol) in anhydrous THF (10 ml). After the reaction mixture was stirred for 1.5 h at 0°C, 2,3-epoxy-2,3-dihydro-1,4-naphthoquinone<sup>2</sup> (1.0 g, 5.75 mmol) in anhydrous THF (5 ml) was added and the mixture was vigorously stirred for 1.5 h at room temperature. The mixture was quenched with saturated aqueous NH<sub>4</sub>Cl and extracted with petroleum ether. Evaporation of the dried (MgSO<sub>4</sub>) organic phase gave a crude product which was subjected to chromatography (SiO<sub>2</sub>) with 20% EtOAc : hexanes to give 0.745 g (77%) of pure **8**, as a solid. M.p.=37-39°C. <sup>1</sup>H NMR  $\delta$  7.45-7.50 (m, 2H, Ar-H), 7.22-7.27 (m, 2H, Ar-H), 5.67 (s, 2H, methylidene-H), 5.45 (s, 2H, methylidene-H), 3.95 (s, 2H, C<sub>2</sub>-H and C<sub>3</sub>-H). <sup>13</sup>C NMR  $\delta$  141.29, 131.81, 129.48, 126.04, 116.02, 57.98. Anal. Calcd. for C<sub>12</sub>H<sub>10</sub>O: C, 84.67; H, 5.93. Found : C, 84.38; H, 5.96.

3,6-Dimethylidene-1,2-epoxy-cyclohexane (7). Following the above described typical procedure 2,3-epoxy-cyclohexan-1,4-dione<sup>3</sup> (0.160 g, 1.27 mmol) in anhydrous THF (3 ml) was added dropwise at 0°C to a suspension of Ph<sub>3</sub>P=CH<sub>2</sub> (4.0 eq) in anhydrous THF (8 ml). After 1 h at room temperature the usual work-up afforded a crude product which was subjected to chromatography (SiO<sub>2</sub>) with 8% diisopropyl ether: petroleum ether to give 72 mg of pure 7 (47%) as a liquid. <sup>1</sup>H NMR δ 5.26 (s, 2H, methylidene-H), 5.14 (s, 2H, methylidene-H), 3.64 (s, 2H, C<sub>1</sub>-H and C<sub>2</sub>-H), 2.32-2.47 (m, 2H, one of C<sub>4</sub>-H<sub>2</sub> and one of C<sub>5</sub>-H<sub>2</sub>), 2.07-2.23 (m, 2H, one of C<sub>4</sub>-H<sub>2</sub> and one of C<sub>5</sub>-H<sub>2</sub>). <sup>13</sup>C NMR δ 142.65, 116.63, 58.18, 29.28. Anal. Calcd. for C<sub>8</sub>H<sub>10</sub>O: C, 78.64; H, 8.26. Found : C, 78.37; H, 8.39.

<sup>1)</sup> Marino, J.P.; Abe, H. Synthesis, 1980, 872.

<sup>2)</sup> Alder, K.; Flock, F.H.; Beumling, H. Chem. Ber. 1960, 93, 1896.

<sup>3)</sup> Abbulut, N.; Balci, M. J. Org. Chem. 1988, 53, 3338.

# **3,6-Dimethylidene-1,2-epoxy-4-cyclohexene (6)**. Following the typical o procedure, 2,3-epoxy-1,4-benzoquinone<sup>2</sup> (0.180 g, 1.47 mmol) in anhydrous THF (4 ml) was added dropwise at 0°C to a suspension of Ph<sub>3</sub>P=CH<sub>2</sub> (4.0 eq) in anhydrous THF (10 ml). After 45 min at room

temperature the usual work-up afforded a crude product which was subjected to chromatography (SiO<sub>2</sub>) with 8% diisopropyl ether: petroleum ether to give 67 mg of pure **6** (39%), as a liquid. <sup>1</sup>H NMR  $\delta$  6.09 (s, 2H, C<sub>4</sub>-H and C<sub>5</sub>-H), 5.49 (s, 2H, methylidene-H), 5.38 (s, 2H, methylidene-H), 3.79 (s, 2H, C<sub>1</sub>-H and C<sub>2</sub>-H). <sup>13</sup>C NMR  $\delta$  139.09, 127.02, 120.0, 56.01. Anal. Calcd. for C<sub>8</sub>H<sub>8</sub>O: C, 79.96; H, 6.72. Found : C, 79.77; H, 6.69.

#### 1,4-Dimethylidene-2,3-epoxy-cis-2,3,4a,5,8,8a-

**hexahydronapthalene** (9). Following the typical procedure 2,3epoxy-2,3,4a,5,8,8a-hexahydro-1,4-naphtoquinone<sup>4</sup> (0.712 g, 4.0 mmol) in anhydrous THF (15 ml) was added dropwise at 0°C to a

suspension of Ph<sub>3</sub>P=CH<sub>2</sub> (4.0 eq) in anhydrous THF (30 ml). After 1.5 h at room temperature the usual work-up afforded a crude product which was subjected to chromatography (SiO<sub>2</sub>) with 8% diisopropyl ether: petroleum ether to give 397 mg of pure **9** (57%) as a liquid. <sup>1</sup>H NMR  $\delta$  5.52-5.58 (m, 2H, C<sub>6</sub>-H and C<sub>7</sub>-H), 5.37 (s, 2H, methylidene-H), 5.10 (s, 2H, methylidene-H), 3.67 (s, 2H, C<sub>2</sub>-H and C<sub>3</sub>-H), 2.66-2.72 (m, 2H, C<sub>4a</sub>-H and C<sub>8a</sub>-H), 1.94-2.04 (m, 4H, C<sub>5</sub>-H<sub>2</sub> and C<sub>8</sub>-H<sub>2</sub>). <sup>13</sup>C NMR  $\delta$  144.43, 125.46, 117.23, 58.00, 36.08, 28.87. Anal. Calcd. for C<sub>12</sub>H<sub>14</sub>O: C, 82.71; H, 8.1. Found : C, 82.93; H, 8.26.



**2,2-Dimethyl-4,5-epoxy-cyclopentan-1,3-dione** (16). Typical **Procedure for Alkaline Epoxidation.** According to a previously described procedure,<sup>2</sup> to a solution of 2,2-dimethyl-4-cyclopenten-1,3-dione<sup>5</sup> (400 mg, 3.22 mmol) in acetone (10 ml), at 0°C, under vigorous

strirring, were added Na<sub>2</sub>CO<sub>3</sub> (20%) (120 mg, 1.12 mmol) and H<sub>2</sub>O<sub>2</sub> (30%) (1.1 ml, 9.67 mmol). After 1.5 h at room temperature the reaction was quenched with Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (10%) and H<sub>2</sub>O (reaction kept cold with ice-water bath), and gave 348 mg of pure **16** (78%), as a pale yellow solid. M.p.= 37-39°C. <sup>1</sup>H NMR  $\delta$  3.94 (s, 2H, C<sub>4</sub>-**H** and C<sub>5</sub>-**H**), 1.27 (s, 3H, one of C<sub>2</sub>-C**H**<sub>3</sub>), 1.11 (s, 3H, one of C<sub>2</sub>-C**H**<sub>3</sub>). <sup>13</sup>C NMR  $\delta$  207.57, 57.52, 48.31, 24.05, 20.53. Anal. Calcd. for C<sub>7</sub>H<sub>8</sub>O<sub>3</sub>: C, 59.98; H, 5.76. Found : C, 59.74; H, 5.59.

<sup>4)</sup> Herz, W.; Iyer, V.S.; Nair, M.G. J. Org. Chem. 1975, 40, 3519.

<sup>5)</sup> Agosta, W.C.; Smith, A.B. III. J. Org. Chem. 1970, 35, 3856.

# $\sum$

### 4,4-Dimethyl-1,2-epoxy-3,5-dimethylidene-cyclopentane (10).

Following the typical procedure for Wittig olefination, 5,5-Dimethyl-2,3epoxy-cyclopentan-1,4-dione **16** (0.348 g, 2.48 mmol) in anhydrous THF (10 ml) was added dropwise at 0°C to a suspension of Ph<sub>3</sub>P=CH<sub>2</sub> (4.0

eq) in anhydrous THF (20 ml). After 1 h at room temperature the reaction was quenched with H<sub>2</sub>O and the usual work-up afforded a crude product which was subjected to chromatography (SiO<sub>2</sub>) with petroleum ether:diethyl ether:Et<sub>3</sub>N (95:5:1) to give 158 mg of **10** (47%), as an oil (contaminated with 4% PPh<sub>3</sub>). <sup>1</sup>H NMR  $\delta$  5.32 (s, 2H, methylidene-H), 5.12 (s, 2H, methylidene-H), 3.91 (s, 2H, C<sub>1</sub>-H and C<sub>2</sub>-H), 1.17 (s, 3H, one of C<sub>4</sub>-CH<sub>3</sub>), 1.15 (s, 3H, one of C<sub>4</sub>-CH<sub>3</sub>). <sup>13</sup>C NMR  $\delta$  156.57, 110.71, 61.36, 42.96, 33.66, 28.61. Anal. Calcd. for C<sub>9</sub>H<sub>12</sub>O: C, 79.36; H, 8.89. Found : C, 79.55; H, 8.81.

**Determination of Absolute Configurations.** The absolute configurations of all 1,4-addiction products **4**, **17-20** were determined on compound **4** by means of the known diastereofacial selectivity of 1-substituted allylic alcohols with titanium/tartrate/TBHP (Sharpless kinetic resolution AE).<sup>6</sup> This inherently reliable procedure had been applied quite recently to the related ( $\pm$ )-3-methyl-2-cyclohexen-1- ol to give optically active products with a known absolute configuration.<sup>7</sup> Also the comparison of the optical rotation of optically active seudenol [*R*-(+) and *S*-(-)-3-methyl-2-cyclohexen-1-ol],<sup>8</sup> an aggregation pheromone from *Dendroctonus pseudotsugae*, bearing a methyl instead of propyl in the 3 position of compound **4**, gave us the same indication obtained with the kinetic resolution strategy (see below).

**Titanium Tartrate Catalytic Asymmetric Epoxidation of 4.** Following the original procedure,<sup>9</sup> an oven-dried 25 mL two-necked round-bottomed flask was charged with 30 mg of 4 Å powdered activated molecular sieves and with 2 mL of dry CH<sub>2</sub>Cl<sub>2</sub> under an argon atmosphere. The flask was cooled to -20°C and *D*-(-)-DIPT (10 mg dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub>, 6 mol%), Ti(O-*i*-Pr)<sub>4</sub> (10.6  $\mu$ l, 5 mol%) and anhydrous TBHP (0.47 mL of a 3.0 M solution in isooctane, 2 eq.) were added sequentially with stirring. The resulting mixture was stirred at -20°C for 30 min. and (±)-3-propyl-2-cyclohexen-1-ol (**4**) (100 mg, 0.714 mmol) dissolved in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was then added dropwise and the reaction temperature was maintained between -20°C and -25°C. The reaction was monitored by GC and quenched (Ferrous sulfate/tartaric acid work-up) after 2 h (60% conversion). The

<sup>6)</sup> Johnson, R.A.; Sharpless, K.B. In *Catalytic Asymmetric Synthesis*; Ojima, I, Ed.; VCH: New York, **1993**; pp 104-108.

<sup>7)</sup> Brown, S.M.; Davies, S.G.; Sousa, J.A.A. Tetrahedron: Asymm. 1991, 2, 511.

<sup>8)</sup> Mori, K.; Tamada, S.; Uchida, M.; Mizumachi, N.; Tachibana, Y.; Matsui, M. Tetrahedron 1978, 34, 1901.

<sup>9)</sup> Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H.; Sharpless, K.B. J. Am. Chem. Soc. **1988**, *109*, 5765.

enantiomeric excess of unreacted 4 (35%) was determined by chiral GC (CPcyclodex- $\beta$ -column), programmed temperature rate: 100°C/ 7.0 min + 3°/min up to 120°C, S-(-) (major) t<sub>R</sub>17.79 min, R-(+) (minor) t<sub>R</sub>18.36 min. The same reaction was also carried out with enantiomeric  $L_{+}$ -DIPT, affording  $R_{-}(+)$  as the major enantiomer of the unreacted substrate 4.

General Procedure for the Enantioselective Ring-Opening of Vinyloxiranes 3 and 6-10 with Et<sub>2</sub>Zn. A solution of Cu(OTf)<sub>2</sub> (2.70 mg, 0.0075 mmol) and chiral ligand (S,S,S)-1 or (S,R,R)-2 (8.1 mg, 0.015 mmol) in anhydrous toluene (1.5 mL) was stirred at r.t. for 40 min. The colorless solution was cooled to -70 °C, additioned with a solution of the epoxide (0.5 mmol) in toluene (0.5 mL) and then with 0.68 mL (0.75 mmol) of a 1.1M solution of Et<sub>2</sub>Zn in toluene (0.23 mL for the kinetic resolution protocol, see Table 1). For all reactions, the temperature was allowed to warm slowly to 0°C (3 h) and the mixture was quenched with saturated aqueous NH<sub>4</sub>Cl (3.0 mL). Extraction with Et<sub>2</sub>O (2 x 20 mL) and evaporation of the dried (MgSO<sub>4</sub>) organic phase gave a crude product which was subjected to chromatography

 $(SiO_2).$ 



S-(-)-3-Propyl-2-cyclohexen-1-ol (4). The general procedure was followed, in accordance with a kinetic resolution protocol, employing 55 mg of racemic vinyloxirane 3<sup>10</sup> (0.5 mmol), Cu(OTf)<sub>2</sub> (2.70 mg, 0.0075 mmol), chiral ligand 2 (8.1 mg, 0.015 mmol) and Et<sub>2</sub>Zn (0.23 mL). The usual workup afforded a crude reaction mixture which was subjected to chromatography (SiO<sub>2</sub>) with 10% EtOAc: hexanes to give 18 mg of pure 4 (76% based on unreacted 3), as a liquid. TLC (15% EtOAc/hexanes) R<sub>f</sub>=0.14.  $[\alpha]_D$ =-45.9 (c=1.08, CHCl<sub>3</sub>). <sup>1</sup>H NMR  $\delta$ 5.41-5.49 (m, 1H, C<sub>2</sub>-H), 4.15-4.22 (m, 1H, CH-OH), 1.90-1.98 (m, 4H), 1.37-1.84 (m, 6H), 0.88 (t, 3H, J=7.32 Hz,  $C_{3'}$ -H<sub>3</sub>).<sup>13</sup>C NMR  $\delta$  143.15, 124.47, 66.69, 40.41, 32.73, 29.20, 21.35, 19.84, 14.53. Anal. Calcd. for C<sub>9</sub>H<sub>16</sub>O: C, 77.08; H, 11.51. Found : C, 77.29; H, 11.62. The enantiomeric excess of 4 (85%) was determined by chiral GC (CP-cyclodex-β-column), programmed temperature rate: 100°C/ 7.0 min + 3°/min up to 120°C, S-(-) (major) t<sub>R</sub>17.79 min, R-(+) (minor) t<sub>R</sub>18.36 min.



Et 3-Methylidene-2-ethyl-1-cyclohexanol (5). The first eluting fractions of the above flash chromatography afforded 3 mg of pure 5 (9% based on unreacted 3 ). TLC (15% EtOAc/hexanes)  $R_f=0.20$ . <sup>1</sup>H NMR  $\delta$  4.83-4.87

(m, 1H, methylidene-H), 4.69-4.74 (m, 1H, methylidene-H), 3.65-3.74 (m, 1H, CH-

<sup>10)</sup> Tanis, S.P.; Herrinton, P.M. J. Org. Chem. 1985, 50, 3988.

OH), 2.02-2.13 (M, 1H, C<sub>2</sub>-**H**), 1.44-1.85 (m, 8H, -C**H**<sub>2</sub>-), 0.86 (t, 3H, *J*=7.3 Hz, -C**H**<sub>3</sub>). <sup>13</sup>C NMR δ 148.5, 111.6, 73.1, 54.1, 32.5, 30.4, 23.5, 23.3, 12.7.



*R*-(-)-4-propyl-1-methylidene-(2*H*)-2-naphthol (17) The general procedure was followed employing 85 mg of symmetrical vinyloxirane 8 (2.0 mmol), Cu(OTf)<sub>2</sub> (10.8 mg, 0.03 mmol), chiral ligand 1 (32.4 mg, 0.06 mmol) and Et<sub>2</sub>Zn (2.70 mL). The usual

work-up afforded a crude reaction mixture which was subjected to chromatography (SiO<sub>2</sub>) with 20% EtOAc: hexanes, to give 366 mg of pure **17** (92%), as a liquid.  $[\alpha]_{D}=-172.8$  (*c*=1.31, CHCl<sub>3</sub>). <sup>1</sup>H NMR  $\delta$  7.47-7.51 (m, 1H, Ar-H), 7.11-7.21 (m, 3H, Ar-H), 5.86 (d, 1H, *J*=4.4 Hz, C<sub>3</sub>-H), 5.48 (s, 1H, methylidene-H), 5.34 (s, 1H, methylidene-H), 4.63-4.75 (m, 1H, CH-OH), 2.28-2.38 (m, 2H, C<sub>1</sub>'-H<sub>2</sub>), 1.34-1.53 (m, 2H, C<sub>2</sub>'-H<sub>2</sub>), 0.87 (t, 3H, *J*=7.32 Hz, C<sub>3</sub>'-H<sub>3</sub>).<sup>13</sup>C NMR  $\delta$  138.43, 133.40, 129.01, 128.26, 126.79, 125.86, 124.13, 114.80, 107.44, 69.29, 35.25, 21.85, 14.57. Anal. Calcd. for C<sub>14</sub>H<sub>16</sub>O: C, 83.95; H, 8.06. Found : C, 83.77; H, 8.04. The enantiomeric excess (66%) was determined on the purified product (SiO<sub>2</sub>) by chiral HPLC (Daicel Chiralcel OD-H column), hexanes / 2-propanol 97:3, flow rate 0.5 mL/min, *R*--(-) t<sub>R</sub>19.98, *S*-(+) t<sub>R</sub>20.94 min.



*R*-(-)-3-propyl-6-methylidene-2-cyclohexen-1-ol (19) The general procedure was followed employing 56 mg of symmetrical vinyloxirane 7 (0.46 mmol), Cu(OTf)<sub>2</sub> (2.49 mg, 0.0069 mmol), chiral ligand 1 (7.5 mg, 0.0138 mmol) and Et<sub>2</sub>Zn (0.63 mL). The usual work-up afforded a crude

reaction mixture which was subjected to chromatography (SiO<sub>2</sub>) with 20% EtOAc: hexanes, to give 63 mg of pure **19** (90%), as a liquid. [α]<sub>D</sub>=-110 (*c*=0.96, CHCl<sub>3</sub>). <sup>1</sup>H NMR δ 5.47-5.51 (m, 1H, C<sub>2</sub>-**H**), 5.01 (s, 1H, methylidene-**H**), 4.89 (s, 1H, methylidene-**H**), 4.48-4.55 (m, 1H, C**H**-OH), 2.40-2.53 (m, 1H), 2.21-2.33 (m, 1H), 1.92-2.17 (m, 4H), 1.34-1.52 (m, 2H, C<sub>2</sub>'-**H**<sub>2</sub>), 0.88 (t, 3H, *J*=7.32 Hz, C<sub>3</sub>'-**H**<sub>3</sub>).<sup>13</sup>C NMR δ 149.41, 143.63, 124.11, 109.06, 69.85, 40.02, 31.76, 29.82, 21.37, 14.52. Anal. Calcd. for C<sub>10</sub>H<sub>16</sub>O: C, 78.89; H, 10.6. Found : C, 78.56; H, 10.48. The enantiomeric excess (97%) was determined by chiral GC (CP-cyclodex-β-column), programmed temperature rate: 100°C/3.0 min + 3°/ min up to 120°C, *S*(+) t<sub>R</sub>17.89, *R*(-) t<sub>R</sub>18.09 min.



(4aS, 8aR, 2R)-(+)-4-Propyl-1-methylidene-*cis*-,5,4a,8,8atetrahydro-(2*H*)-naphthalen-2-ol (18) The general procedure was followed employing 87 mg of symmetrical vinyloxirane 9 (0.5 mmol),  $Cu(OTf)_2$  (2.70 mg, 0.0075 mmol), chiral ligand 1 (8.1 mg, 0.015

mmol) and Et<sub>2</sub>Zn (0.68 mL). The usual work-up afforded a crude reaction mixture

which was subjected to chromatography (SiO<sub>2</sub>) with 20% EtOAc: hexanes, to give 80 mg of pure **18** (78%), a solid. M.p.= 35-38°C.  $[\alpha]_D$ =+20.96 (*c*=1.04, CHCl<sub>3</sub>).<sup>1</sup>H NMR  $\delta$  5.52-5.75 (m, 2H, C<sub>6</sub>-H and C<sub>7</sub>-H), 5.48 (d, 1H, *J*= 4.0 Hz, C<sub>3</sub>-H), 5.15 (s, 1H, methylidene-H), 4.84 (s, 1H, methylidene-H), 4.44 (d, 1H, *J*= 3.9 Hz, CH-OH), 2.82-2.92 (m, 1H), 1.93-2.42 (m, 7H), 1.33-1.55 (m, 2H, C<sub>2</sub>'-H<sub>2</sub>), 0.91 (t, 3H, *J*= 7.33 Hz, C<sub>3</sub>'-H<sub>3</sub>). <sup>13</sup>C NMR  $\delta$  149.69, 149.08, 125.89, 125.17, 122.08, 111.51, 70.74, 39.14, 37.76, 34.32, 28.37, 27.07, 21.38, 14.48. Anal. Calcd. for C<sub>14</sub>H<sub>20</sub>O: C, 82.29; H, 9.87. Found : C, 82.12; H, 9.86. The enantiomeric excess of **18** (71%) was determined by chiral HPLC analysis (Daicel Chiralcel OD-H column), hexanes / 2-propanol 99:1, flow rate 0.5 mL/min, t<sub>R</sub> 7.14 min (major), t<sub>R</sub> 8.89 min (minor) on the corresponding (*R*)-MTPA chloride in anhydrous pyridine in the presence of catalytic amounts of DMAP.

Et de la constant de

*R*-(-)-4,4-Dimethyl-3-propyl-5-methylidene-2-cyclopenten-1-ol (20) The general procedure was followed employing 34 mg of symmetrical vinyloxirane 10 (0.25 mmol),  $Cu(OTf)_2$  (1.35 mg, 0.0037 mmol), chiral ligand 1 (4.1 mg, 0.0075 mmol) and Et<sub>2</sub>Zn (0.34 mL). Usual work-up

afforded a crude reaction mixture which was subjected to chromatography (SiO<sub>2</sub>) with 10% EtOAc: hexanes, to give 33 mg of pure **20** (80%), as a liquid. [α]<sub>D</sub>=-125.9 (c=0.52, CHCl<sub>3</sub>). <sup>1</sup>H NMR δ 5.44-5.49 (m, 1H, C<sub>2</sub>-H), 5.28 (d, 1H, J=1.71 Hz, methylidene-H), 5.09 (d, 1H, J=1.71 Hz, methylidene-H), 4.96-5.04 (m, 1H, CH-OH), 1.92-2.02 (m, 2H, C<sub>1</sub>'-H<sub>2</sub>), 1.47-1.65 (m, 2H, C<sub>2</sub>'-H<sub>2</sub>), 1.16 (s, 3H, one of C<sub>4</sub>-CH<sub>3</sub>), 1.08 (s, 3H, one of C<sub>4</sub>-CH<sub>3</sub>), 0.96 (t, 3H, J=7.32 Hz, C<sub>3</sub>'-H<sub>3</sub>).<sup>13</sup>C NMR δ 164.42, 156.73, 123.96, 107.93, 48.73, 30.39, 29.30, 28.49, 28.35, 21.39, 14.92. Anal. Calcd. for C<sub>11</sub>H<sub>18</sub>O: C, 79.45; H, 10.92. Found : C, 79.28; H, 10.98. The enantiomeric excess (85%) was determined after chromatography (SiO<sub>2</sub>) by chiral GC (CP-cyclodex-β-column), isothermal 110°C, *R*-(-) t<sub>R</sub> 33.55, *S*-(+) t<sub>R</sub>35.44 min.

Synthesis of Racemic  $S_N2'$  (Conjugate) Adducts 4, 17-20. To a stirring suspension of CuCN (9.0 mg, 0.1 mmol) in anhydrous Et<sub>2</sub>O (0.5 mL), at -40°C, was added dropwise EtMgCl (2.0 M in THF) (0.38 mL, 0.75 mmol). The heterogeneous mixture was allowed to stir for 30 min at the same temperature and was then cooled up to -65°C. A solution of the vinyloxirane (0.5 mmol) in Et<sub>2</sub>O (0.5 mL) was slowly added and the resulting mixture was allowed to warm to 0°C. The reaction was followed with analytical TLC and was quenched at 0°C with saturated aqueous NH<sub>4</sub>Cl. Extraction with Et<sub>2</sub>O and evaporation of the dried (MgSO<sub>4</sub>) organic phase gave almost exclusively the corresponding racemic  $S_N2'$  adduct 4, 17-20 for all the employed vinyloxiranes.